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IXTRODUCTION 

The topic  of r ig id  body kinematic# is  an ancient one and many treatments 

of the subject are available. 

they generally have two common factors.  

Csstesian orthogonal coordinates f o r  the analyses. 

Cartesian coordinates i s  no real handicap s ince i n  pract ice  one invariably 

assumes the space t o  be Euclidean. 

a l l  the usual results f o r  a Euclidean space covered by Cartesian orthogonal 

coordinates as a special  case of a more general analysis val id  i n  a 

Although these treatments differ i n  detail, 

F i r s t  of all they rely heavlly upon 

This rel iance upon 

However, it should be possible t o  recover 

Riemannian spa- covered by an arbit- coordinate system. 

common fac to r  which characterizes previous treatments was tha t  they assumed 

an i n t u i t i v e  knowledge of r i g i d  body motions. 

defined rather than deduced, the nature of r ig id  body motions. 

example, Whittaker [lf defines t ranslat ions as those displacements f o r  which 

the f i n a l  and i n i t i a l  posit ions of all points of a r i g i d  body can be connected 

by parallel  s t r a igh t  l i n e s  while rotat ions about a l i n e  are those displace- 

ments which leave unchanged the coordinates of points that l i e  along the 

s t ra ight  line. 

The second 

That is, they operationally 

Thw, f o r  

With the ope ra thcd .  rlefinition of t rans la t ions  and the  use of Cartesian 

orthogonal coordinates the analysis of t rans la t iona l  motion becomes trT-~%zl . _  
and detailed mathematical treatment i~ reserved f o r  ro ta t iona l  motion. Currently 
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the  most popular approach t o  the  study of ro ta t ions  i s  through the  mathematical 

machinery of orthogonal transformations between Cartesian orthogonal coordi- 

nates. See f o r  example the treatments given by Goldstein 121 and mer [31. 

Orthogonal transformations leave the  form and the  value of the expression for 

distance between two points invariant and thus they qualify as mPPlW3 

r i g i d  body motions. 

Euclidean space covered by a Cartesian orthogonal coordinate system. 

fornulat ion is based on Cartesian tenlsors and represents a generalization of 

t he  three-dimensional case. 

of 

Synge and Schild [4] discuss rotat ions i n  an n-dimensional 

Their 

I n  t h i s  paper tensor analysis w i l l  be used t o  disauss r ig id  body kine- 

matics and a knowledge of tensor analysis equivalent t o  t ha t  obtainable from 

t h e  references [4], [ 5 ] ,  and 161 will be presumed. The general discussion 

will be valid i n  an n-dimensional Riemannian space; however, i l l u s t r a t i o n s  

of the general results w i l l  be f o r  a Euclidean space. The discussion will be 

based upon the f a c t  tha t  distances between neighboring points of a r ig id  body 

are invar ian t  during the motion, 

The use of tensor analysis i n  the discussion of r i g i d  body kinematics has 

the expected advantage that the results are presented i n  a form su i t ab le  for 

use i n  any coordinate system. However, other  benefi ts  accrue from the use of 

tensor  analysis. First, it makes possible a general discussion of moving 

coordinate systems and the components of t he  t i m e  derivatives of vectors and 

tensors  with respect t o  these coordinates. Second, it makes possible a dis- 

cussion of those constants of the motion known as the Cartesian components of 

the l i n e a r  momentum and anguiar momentum of u ciuegd system, 

these &re properly regarded as a set of scalars rather than components of' 

s h t i ~  that 
t 

vectors. 
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We conclude the introduction with a brief word regarding the notation t o  

be employed i n  subsequent sections of the paper. 

convention i n  the form "a repeated index i n  a subscript  and a superscript  

implies a summation over the ind&f' 

does not i m p l y  summation when indices are repeated only as subscripts o r  only 

as superscripts. Arbitrary coordinates w i l l  be denoted by xk while  yk 

will be used exclusively f o r  Cartesian orthogonal coordinates. 

symbol of the  second kind w i l l  be writ ten as 

t ive win be symbolized by 

RIGI?, BODY MOTIONS 

W e  w i l l  use the summation 

This form of the summation convention 

The Chris toffel  

[jk) while the covariant deriva- 
.. *i 

Vj. 

The following two sections will consider the topic  of r i g id  body motions 

I n  the first section we will considdr what conditions i n  a very general w. 
must be placed on an arbitrary motion i n  o laer  that it qualify as the motion 

of a r i g i d  body. 

motions with rotat ions and translations.  This ident i f ica t ion  will then immedi- 

ately lead t o  the separation of arbitrary, i n f i n i t e s i d r i g i d  body motions i n t o  

ro ta t ions  and t ramla t ions .  

Conditions f o r  Rigid Body Motions 

The second section will then ident i fy  cer ta in  types of these 

Consider an n-dimensional space covered by some coordinate systems with 

coordinates 

continuous d is t r ibu t ions  of pa r t i c l e s  i n  th i s  space and examine the  displace- 

ments which these pa r t i c l e s  undergo. 

M 

--k J - 

k, x2, $, * * - xn. Assume that there i s  an essent ia l ly  

DiEphCaentE are considered t o  a mapping 

of the space onto itself such tha t  the p a r t i c l e  with i n i t i a l  coordinates 

z-- Afi t e e n  cuntinuowb- to a pos,iticil vhere itii ctsr~iiiates m e  2 ii8 
0 

shown i n  fig.  1. 



M: xk = xk(xjrt) 0 (1) 

The variable t is some continuous parameter of the mapping such that at  

t = to, the mapping reduces to the identity mapping. 

x9xo ,  to) = e (2 1 
Two points 

will be mapped into xk and xk + dxk, respectively. The relationehip of 

the displacements dxk and dxi is obtained from the mapping M since 

and x: + e which are neighboring points at t P to 
J 

and therefore 

If the positive definite metric tensor of the space is 

of the lengths of the two displacements are 

gij(x), then the square 

is the metric tensor evaluated at, xis Combining (3) and (4) we 
r3fj where 

can write for the change in the square of the lengths 

(ad2 - = m i j  g do 
where 

( 5 )  



It should be noted that (6) hss the appearance of the transformation d e  

for the covsriant components of B second order tensor, however, we are con- 

sldes2ng here a mapping of the space onto itge3.f and not a coordinate trans- 

fomtion. That is, (6) is to be interpreted as a condition on the mapping (I) 

assuming both g and gij to be known rather than as an expression defirling 
053 

in tenns of g 

The condition (6) w i l l  not be satisfied by some arbitrary mapping M. 

as is the case when discussing coordinate transfarmations. $1: 

To make *her progress we W i l l  consider ‘only infinitesimal displacernents, that 

is, displacements which Cake place when the parameter t changes from to to 

to + dt, I’n this situation the mapping differs only infinitesimally from the 

Identity mapping. From expansion of the mapping (1) about t P to we obtata 

where 

If the parameter t is the timey then Vk would be the velocity field at 
0 

and to. With the a i d  of the infinitesimal mapping ( 7 )  we can now 

evaluate the partial derivatives appearing in (6) in the form 



. 

Further by a Taylor series expansion we find for inf ini tes imal  displacements 

Sinae t h e  aovarlant derivative of the metric tensor vanishes 

it is possible t o  express the  partial de r iva t ive  of t he  metric tensor  in terms V 

of itself and the Chris toffel  symbol. of t h e  second kind. 

8105,s (7)  t o  (10) i n t o  (6) one obtains 

Substi tnting equa- 

To first order i n  d t  t h i s  becomes 

Since the  choice of the point 6 and the time to is wbitrasy the  subscript  

"0" can be dropped frm equation (ll). 

recognized as the  cwariant derivatives of the vector f i e l d  Vk 

The terms i n  the parenthesis will be 

and since 

the covariant derivative of the  metric tensor vanishes it can be used to. lower 

the indcur: on Vk. Thus we obtain f ina l ly  the condition which m u s t  ba satisfied 

by the vector f i e l d  Vk i n  order that the inf ini tes imal  mapping (7)  correspond 

to a r i g i d  body displacement 

vj vi e vi v j  = 0 

This can only be true i f  Vk is a solution of the equation 

vZ 'k 'Zk 



where fiZk(x,t) are the components of a skew-symmetric second order tensor 

field. me tensor flzk is just the  w r t i c i t y  tensor of f l u i q  mechanics 141, 

c'6 1 
vk - vk VZ 2nZk 

If  the? vector f i e l d  Vk is t o  be obtained as  a solut ion of the qua- 

t i o n  (13) f o r  a known flzk, then the choice of flzk is not cmpleteIy 

arbi t rary,  but must satisfy some conditions, 

it wtXL be necess- t o  use a generalized Stokes' theorem [4? val id  i n  EKI 

To establish these conditions 

is the extension of an infinitesimal M-cell sn8 is a tensor of rank M, skew 

symmetric i n  ail i ts  indices, while % is an'clrientec~ f i n i t e  region of an 

M-dimensional subspace of the n-dimensional space which is bounded by the  

closed ( M  - 1)-specs &I-L' 
that the  extensfen is sktew-symm&ric i n  all i ts  indiC8E whlle the  p a r t i a l  

The first equality i n  (14) follows from the fact  

derivative and the covar imt  derivative differ by terms which are symmetric 

i n  two indices. We w i l l  now show that t he  integral. of Oz vk over a closed 
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subspace % must vanish. "hQ3 integral a m  btit wri t ten  as a sum of two i n t e g d s  

each over an open subspace (see fig, 2) 

%%me % and D$ combine t o  give By Ptok@st theorem both of these in t e -  

g r d s  cgn be replaced by l i n e  in tegra ls  over their bounding curves 9 a,nd D* I 
n A 

The extension ark is just adr and t h w  the two integrals are l i n e  in tegra ls  

around closed curves. The orientation of D2 and Di must be such as t o  

agree w i t h  the or ientat ion assigned t o  

1-ce l l  along D1 have the opposite orientation of the 1-cel l  along Di. Thus 

the r igh t  hand side of (15) i s  a sum of two l i n e  in tegra ls  each taken along t h e  

(1) 

F$. This, however,, requires that the 

same 

hand 

curve but i n  opposite directions 

side of (15) is zero. But using 

r 'Zk 
kZ 

vZ 'k "(2) 

and hence cancel and therefore the r igh t  

Stokest theorem on (13) we can write 

r 
. .  4 JR3 

cycle permitation of indices i n  the last in t eg ra l  and using the skew- 

symmetry of dTkzi we f i n a l l y  obtain 
( 3 )  

J R2 Rg 



Clearly the  in t eg ra l  will vanish if we require 

vi 'lk + vZ 'ki Ok O i l  * (17) 

This then supplies us with the  desired condition on the  tensor 

previously pointed out it is permissible t o  interchange covariant derivativae! 

and ordinary derivatives i n  t h e  integrand without invalidating Stokes* theorem. 

aIk. As was 

Thus (17) can b8 replaced by the  equivalent requirement 

Eqnation (18) can also be obtained d i rec t ly  from (17) by u t i l i q ing  the defini-  

t i on  of the  covariant derivative. 

The conditions (17) o r  (18) are known as the  in t eg rab i l i t y  conditions [SI 

f o r  the  set of equations (13), and are precisely the  requirements which must be 

s a t i s f i e d  if one is t o  be able t o  solve equations (13). For a three-dimensional 

space these in t eg rab i l i t y  conditions can be wri t ten i n  a more recognizable form. 

This is possible because i n  3-space all conditions (18) are ident ica l ly  satis- 

f i e d  except 

Further one can always associate with a skew-symgetric Censor 

vector Qi defined by 

azk an oriented 

where E 'jk is  the  oriented t h i r d  order tensor  defined i n  terms of the permita- 

t i o n  symbol e ijk and the  determinant of  the  metric tensor g as 
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The expression (20) can be solved f o r  illm by multiplying by the  covariant com- 

ponents and using t h e  expansion i n  terms of the  Kronecker 

tensor 6 

ctmi P 4 eZmi 
i 
3 

t o  obtain 

Qzm = ~ t m i ' ~  (22) 

Wing (22) the  in t eg rab i l i t y  condition (19) can be wri t ten i n  terms of the 

oriented vector a i  as 

Thus i n  3-space i f  the  determinant 

the in t eg rab i l i t y  conditions reduce t o  the  requirement t h a t  t he  oriented tensor  

SZk have a vanishing divergence. 

g of the  metric tensor  does not vanish then 

It should be noted t h a t  our i n i t i a l  approach t o  r i g i d  body motion was 

Lagrangian i n  naturet as typ i f ied  by t h e  mapping (l), and fu r the r  t h a t  we 

defined the  vector f i e l d  Vk i n  a Lagrangian manner. However i n  passing t o  

the  inf in i tes imal  case we succeeded i n  changing our point of view t o  Eulerian. 

This is  analogous t o  the s i tua t ion  i n  f l u i d  mechanics where the velocity f i e l d  

i s  defined by a consideration of the  motion of individual f l u i d  par t idles ,  and 

thereafter the Eulerian approach i s  adopted. 

regained by solving (13) f o r  

The Lwrangian viewpoint can be 

vk(xyt) and then integrat ing the  equations 

- dxt VZ(x,t) gzkvk (24) at  



to obtain the corresponding mapping (l), The initial coordinates are 

introduced as initial values in the solution of (24). 

procedure, in a subsequent section, for the simple case of uniform rotation 

arid translation i n  a Euclidean 3-space. 

Definitions of Rotations and Translations 

We will carry out this 

The vector field Vk, which defines a rigid body displacement, must satisfy 

the inhomogeneous partial differential equations (13) where the choice of the 

skew-symmetric tensor nZk is arbitrary except that it must satism the inte- 

grability conditione (17), Now to any particular solution of (15) we can 

always add a solution of the homogeneous problem obtained by setting nlk 

to zero. 

as 

equd 

We thus conclude that any solution to equations (13) can be wrltten 

vk uk + uk (254 

vZ 'k 'tk @5b) 

where 

and 

07, Uk = 0 (254  

We w i l l  identify Uk as corresponding to infinitesimal rotations while Uk 

w i l l  be identified with infinitesid translations. The identification is 

motivated by the fact that 

field [6]. If the identifications of' uk and uk are accepted, then (25) 

is the infinitesimal version of Chasles' theorem [21, which refers to the 

decomposition of a general displacement into rotations and translations. 

uk satisfies the condition for a parallel vector 
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R O m O B  Ill A lWC!LIDW SPACE 

In the following three sections we w i l l  specialize our general results to 

B, Euclidean space, 

leads to the usual relationships for rigid body rotations in a three-dimensional 

Xn particular it will be shown that this specidization 

Euclidean space. 

AnaLytical Expressions for the Vector Field V, 

Since we have assumed the space to be Euclidean we can introduce a set 

of Cartesian orthogonal coordinates yk. In this coordinate system the metric 

tensor is just the Kronecker delta 

aad all distinction between covariant and contravariant components vanishes. 

However raised and lcnmmd indices will be retained to permit retention of 

the summation conwmUoT1*r Also in this coordinate system the Christoffel sym- 

bols vanish identically and thue covariant differentiation and ordinary differ- 

entiation become identical. 

TO distinguish the components of the rotation tensor QZk in some 

arbitrary coordinate system f r o m  its components in 8 Cartesian orthogonal co- 

ordinate system, the latter w i l l  be denoted by 

equ&tions (13) and the integrability conditions (18) become 

tozk' With this convention the 

aWZk '%i + - = o  a(uiZ -+- a# ayz ark 
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13 general it is t o  be expected that 

and t h e  parameter t which is disregarded for the  moment, 

Vk w i l l  be a function of all the  coordinates 

(28) 1 2  vk YkrY t Y  , * yn) 

However from (26) with ( 2  x k) we have by virtue of the  skew-symmetry of mZk 

(k not summed) 

~ h u s  vk cannot be a function of yk. 

m e t i o n  of yk 
And thus its der ivat ive cannot be a 

TMS impues t h a t  3 k  cannot be t e e n  as a function of yk. Interchanging 

the ro les  of 2 and k i n  (30) s h m  tha t .  9 2  cannot be a function of y2. 

H m e r  q k  and differ only i n  sign and thus d)kz can be ne i ther  a 

function of yk nor yz. 

q k  qk(yi .1  * 2 f k )  (311 

The in t eg rab i l i t y  conditions (27) impose addi t ional  constraints on the  

functional form of 9 k . i  i n  fact ,  these conditions are  such t h a t  q k  cannot 

depend upon any coordinates. 

ponent %2 by writ ing out equations (27) i n  detail for the  cases I i l,, 

k 3 29 i = 3,4,5 0 . 9 n 

To see t h i s  l e t  UB focus a t tan t ion  on the com- 



(32a, b, c, - ) 

. . . . . . . . a , . * .  

Frcm (31) it can be seen tha t  

3 4  variables y ,y , * yn. However, by virtue of (31), the first term on the 

r igh t  hand side of (32a) can be a function of f1,yV * yn 

next term may contain the  variables 

s ide  cantains the variable y3 

versely the variables y' and y2 appear on the  r igh t  but hot on the  left. 

a)12 and all i ts  derivatives m y  contain only ,the 

while the  

y2,y4,9 yn. Thus t he  l e f t  hand 

which does not appear on the  r igh t  while  con- 

If (32a) is t o  be val id  f o r  an a rb i t ra ry  point i n  the  space then a,.. may at  

most be l i n e a r  i n  the  variable y3 while u+3 must be l i nea r  i n  y1 and %s 

l i n e a r  i n  y2. Similarly (32b) implies t h a t  q2 m u s t  be l i n e a r  i n  y4 while 

(32c) implies l i n e a r i t y  i n  3. Considering the  remaining eduations of (32) 

shows t h a t  q2 must be a l i n e a r  function of the coordinates i f  it is t o  contain 

them 8% a l l .  Considering other components of a'tk i n  l i k e  fashion we reach 

the  conclusion t h a t  yk 
variables. Alternately t h t s  can be expressed by s w i n g  t h a t  vk can be no 

more than quadratic i n  the  coordinate variables. 

can be, at most, a l i nea r  function of the coordinate 

Therefore the most general 

form of Vk can be writ ten as 

VI< = z 1 A1;2JYzYJ + I31,;Y 2 + C!, ( 3 3 )  
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where Aizj, BkZ and ck are independent of the coordinate. We point out 

at this juncture that the use of indices on A, B and C is not to be 

construed as implying some tensor character to these quantities but is only 

a convenient notation to indicate summations. With no loss in generality 

we can assume Akzj to be symmetric in the last two indiees 

Akt j p: AkjZ (34) 

Differentiation of (33) gives 

From the skew-symmetry of mik we have 

?k -t %i (4212 + AikZ)y2 + %i + Bik 

If this is to be satisfied f o r  an arbitrary choice of yz 

r O  

then we must have 

%kZ = 'AkiZ ( 3 6 )  

Bik na 'Bki (37) 

Equations (34) and (36) give two conditions on the 

obtained from the integrability conditions (27) 

AikZ, while a third can be 

Using (35) the integrability 

conditions can be written as 

AkZi + hkt + *Zik (38) 

However from the symmetry properties (34) and (36) of the Akzi we have 

AkZi 'A2ki '*Zik 

Combining this with (38) we find that 

AikZ 

Thus the tensor q k  

depend upon the parameter t 

cannot be a function of the coordinates but can only 

&ik = %k(t) (39) 



p 

In some coordinate system which is not Cartesian this w i l l  not in general be 

true since we have from the usual transformation rules 

Since the 

%k Bki 

And therefore (33) can be written as 

vanish we have from (35) 

vk = -%ZY +ck (42) 

The derivative, with respect to the coordinate variables, of the first term 

of (42) gives 

we seg by comparison with (25b,c) that the first term is a particular integral 

of (26) while the second is a solution to the corresponding homogeneous problem. 

Therefore we have the identification 

q k  while the derivative of the second term vanishes and thus 

uk e ‘k (44) 

Using (22) in Cartesian orthogonal coordinates in a three-dimensional 

space we can write the rotational field (43) in the more familiar form 

uk rz -ekzja j Y = ekjzcuj,z (45) 

And therefore 

Vk.= vk + uk = ekjzmjyz + ck 

In the notation of vector analysis (45) is just 

N u = g x z  



. 

I And thus we can write (46) in the form 

N v=gxss+g (47) 

It should be noted that although yz can be considered a vector for the group 

of centered affine transformations, it is not a vector f o r  some more general 

transformation. 

garded as representing the dependence of the Vector field 

Cartesian coordinates yz. The components in some other coordinate system 

must he obtained by the usual transformation rules for a vector. 

I 
In the latter case either (43) or (45) are only to be re- 

upon the 

We conclude this section by showing that in a Euclidean 3-space the 

rotational part of the motion is always perpendicular to the vector 

is, & Q k  c 0. 

Qi, that 

Working in Cartesian coordinate# we have from (45) 

'@ ekjZ CoJyZ& I -ejkaa!y~,J = -ujmj 

And therefore 

= 0 

Since this is a scalar equation it is valid for all coordinate systems in the 

Euclidean 3-space. Thus the vector field .Qk can be thought of as determining 

an axis of rotation in a Euclidean 3-space. 

Particle Trajectories in a Euclidean 3-Space 

It was previously indicated that the mapping (1) could be regained by an 

integration of equation (24). 

in a Euclidean 3-space covered by Cartesian coordinates in the simple case 

This integration can be readily accomplished 

where the vector field Vk is independent of the parameter t. This will 

be true if the rotation tensor aIk and the vector ck are independent of 

t. Instead of working with the tensor q k  we w i l l  use the associated oriented 

vector cui. ~ h u s  we write for vi 



vi = eizpJyk + ci (48) 

The system of coupled first order differential equations (24) now becomes 
I 

(49) 

We want the solution of this system of equations subject to the initial condi- 

t ions 

$yo) = 7k 
The system of equations (49) is most easily integrated by the method of 

Laplace transformations [TI .  The transform of yk will be written as 

Taking the transform of '(49) we obtain 

where we used the relations 
I 

I The system of equations (50) is a set of inhomogeneous linear equations for 

the three unknowns Yk (k = 1,2,3) which can be solved if the coefficient 

matrix 
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can be inverted. 

inversion tha t  

- 13 

If w e  denote the  inverse by Azi it can k shown by d i r e c t  

where w e  have wr i t ten  m2 f o r  aiai. By d i r ec t  mult ipl icat ion it can be 

verified tha t  

Multiplying (50) by Azi w e  obtain 

Performing t h e  mult ipl icat ion and using the p a r t i a l  fraction expansion 

w e  f i n e l y  obtain 

Taking t h e  inverse transform of (54) using 

(54) 



add defining a unit vector h2 by 

there results the expression 

Y’ = RF + BkC Z k  
(55 1 

where 

and 

.I 

Rk(cot) = - % dt 31 (8 ;  - hZhk)COS at + 

The equations (55) correspond 

where our initial coordinates Tk 

ezJihjSik sin at + h’hk (57 )  

to a particular mapping of the form- (1) 

are used in place of the former notation 

k for initial coordinates xo. These are the trajectories of the particles of 

a rigid body when the motion of the rigid body is characterized by a constant 

tok and ck. 
Orthogonal Rotation Matrices 

We are now in a position to show that an orthogonal matrix can be used 

to describe a pure rotational displacement. 

ck 

Rt can be used to completely characterize the rotation. 

For a pure rotation the constants 

iil (55)  iiiixt 52 t a~~er ,  ao  zerz. %US it ~ P C ~ E P S  a,p~a,rent. tr.h~l.t the matrix 

It is therefore 
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appropriate to call this a rotation matrix. 

ment of the trigonometric functions sine and cosine. Therefore it seems 

reasonable to associate at with the angle of rotation 8 about an ais 

specified by the vector cak P ahk. %e magnitude of the vector cuk is to 

be associated with dQ/dt. The matrix is identiml to the rotation matrix 

given by m e r  [SI as his equation (5.12). 

tion (7) of the note by Grubin [8]. His equation (7) corresponds directly to 

OXP equation (55) with 

In (57) at appears as the argu- 

I 

This same matric appears in equa- 

ck P 0. 

The rotation matrix is an orthogonal matrix, that is, it satisfies the 

relations 

Rj6 i j k  2 6 it 

These relations can be verified with some algebraic tedium. Thus one can 

easily solve (56) for the Tk in terms of yz as 

Where 

$s the inverse matrix (in this case also the transpose) of the matrix RZ. 

For the particular case of a rotation about the y3 axis hk = (O,O,l), the 

matrix 63; 
4 

takes the familiar form 

\ 

COS 8 sin 8 0 
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where the upper index labels the rows while the lower labels the columns. 

MOVING COQRDIIVATE SYSTEMS 

xn discussing rigid body dynamics it is often convenient to work in a 

coordinate system rigidly attached to, and moving with, the rigid body 121, 

[ g ] .  We wl l l  now consider how coordinate transformations between frames in 

relative motion differ from coordinate transformations between frames with 

no relative motion. 

The Etelationship Between a Mapping and a 

Coordinate Transformation 

An integration of equations (24) subject to the initial conditions 

xk(t = 0) x gives us a set of equations of the form 

xk = &(9,t) (60) 

This integration was explicitly carried through for a particularly simple case 

in a previous section. 

should be considered as a mapping of the type (1). 

regarded as a coordinate transformation between an x-frame and an H-frame 

Because of the way in which (60) was obtained it 

However it can also be 

moving relative to one another with a rigid body motion. Since the X' are 

fixed numbers independent of the time t, it is reasonable to regard the 

Z-frame as a coordinate system attached to a rigid body and moving relative 

to a nstationary" x-frame. For present purposes there is no need to assume 

that the x-frame is an inertial frame. This question enters only when one 

considers questions of dynamics rather than kinematics. The coordinate trans- 

formation point of view will be adopted in the next section where we will 

place particular emphasis on the transformation properties of the intrinsic 

time derivative of vectors and tensor. 
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Transformation of the Intrinsic Time Derivative 

The components of an arbitrary vector or tensor transform in the usud 

way under the transformation (1) provided that the vector or tensor under 

consideration is not obtained from another vector or tensor by intrinsic 

differentiation. Thus the dontravariant components EiJ of some arbitrary 
second order tensor in the %frame are related t o  the components GkZ in the 

x-frme as 

The only thing to observe here is that even though the Gkz 

be explicit f’unctions of time, the components in the %frame, namely EiJ, 
w i l l .  in general depend explicitly on time 

&xi@ 

may possibly not 

t since the partial derivatives 

are explicit functions of time through the relations (60). 

m e  situation becomes somewhat more complicated if we consider the 

intrinsic derivative of Gkz which is defined to be 

where the prefix on the Christoffel symbols indicates that they are evaluated 

in the 9-frame. This extra index on the Christoffel symbols is necessary here 

since we will be dealing with expressions involving Christoffel symbols in two 

different frames. 

in a l l  coordinate systems related to each other by a coordinate transformation 

which is independent of t. However for transformations of the form (60) it 

is necessary to alter the definition of the intrinsic derivative in a moving 

The definition (62) of the intrinsic derivative is valid 



coordinate system if 6Gkz/st are t o  be components of  a tens@? f o r  such t rans-  

form&%;jons. 

intr i r ipic  derivative i n  a moving frame, tha t  is, we w i s h  t o  es tab l i sh  an ex- 

We now seek t o  es tab l i sh  the appropriate def in i t ion  f o r  t h e  

- - 
6Gij pression f o r  - 
6 t  

. o r  equiva.7,ently 

W e  tdse ets our  

, 

which is defined by 

s t a r t i n g  point the expression r e l a t ing  Gkz t o  Bij namely 

(65)  

Di.fferentiation with respect t o  t i m e  t gives 

The t i m e  deriva-bive of the p a r t i a l  derivative of xk with respect t o  Zit can 

be wr i t ten  as 

Ef‘khe order  of d i f fe ren t ia t ion  is ch&ged i n  the  first term on the r i g h t  we 

have f o r  t h i s  term 
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where we used the definition of The second partial 

derivqtives appearing in the second term of (67) can be expressed in terms of 

Christoffel symbols and first partid derivatives 15 1. 

Vk (7) in the last step. 

~. 
I 

~ 
Therefore (67) can be written as 

However by a differentiation of (60) we find 

Using this in the last term of the preceding equation and combining terms we 

obtain 

Making the appropriate changes of indices in (69) and substituting into the 

last two 'terms of (66) and using (65) to simplify some of the terms there 

results the expression 

.s 
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$j g] + Gkr Up Vz -k Gr2 Or Vk 

'( 70) 

WF &ill denote by 8Zij/Et the terms contained in the brackets of (70). 

The l q s t  two terms in (70) are both contravariant components Qf second order 

tensorg and thus obey the usual rules of transformation and t4erefore (70) 

CRE be mitten as 
I) 

Wow if the two coordinate systems are moving relative to each other as rigid 

bodies, then the gradient of the velocity field 

tensor R (13). With this condition we can, by a comparison of (71) and (64), Zk 
make the definition 

vk can be replaced by the 

This definition can be extended to the contravariant components of higher order 

tensors and vectors either by a procedure identical to that followed above or 

by analogy. In either case we can write, for example, for the contravarimt 

components of a vector 

(733 

The formulae corresponding to (72) and (73) for the covariant components of 

vectors and tensors can be established by an identical procedure. Thus for a 

second order tensor one begins by differentiation of 
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This procedure gives the definition - - 
6Gi j 
-s- sGij +arpri st 6t 

while for vectors 

74) 

The above forpulae shows that only the rotational motion characterized by'the 

tensor nZk, affects intrinsic differentiation. 
\ 

Iptrineic differentiation in a moving coordinate pystem satisfies the usual 
I 

rules for differentiatiop of e m s  and products a6 can eaeily be verified ueing 

the definition0 (72-75). Thus if we take Bij P xi%j 

But 

and therefore 

This section will be concluded by applying (74) to two particular tensors, 

and the tensor nij. Since the intrinsic derivative the metric tensor 

Of the metric tensor vanishes in the x-frame, it also vanishes in the %frame. 
% 



Thus 

This result can be used in connection with (72) to establish the expression 

for the intrinsic derivative of tensors with mixed components. We next apply 

ij' 
(74) to n 

However 

P 
7 -  

j%i 
-r- 
-Q* jnir 

And therefore 

In the concluding two sections of this paper some of the general discussions 

presTnted earlier w i l l  be applied to two specific topics. 

derivation of the constants of motion known as the linear and angular momenta 

of a glosed system 1101. The second will be a derivation of Newton's equations 

of mo$ion in a non-inertid frame. 

Line& and Angular Momentum of a Closed System 

The first will be a 

Consider a closed system of R' particles moving in a twee-dimensional 

spscd covered by a coordinate system 2. 
point particles possessing no internd degrees of freedom. 

We assume that the particles are 

If xk are the 
P t 

coordinatesof the pth particle, then for a conservative system (all forces 

4 



derivable from a potential) the Lagrangian equations of motion for the system 

are 

where %k has been written for &/at and where the Lagrangian function is 
IJ. cr 

We will assume that the mechanical properties of the system are unaffected 

by any rigid body displacement of the system. This assumption when applied t o  

tramiations refers to the homogeneity of space and when applied to rotations 

refers to the isotropy of space [LO]. At this point our discussion requires 

no distinction between translations and rotations, however to obtain the con- 

stants of the motion in the usual, form we will make the distinction at a 

later stage. 

introduction of a new coordinate system zk by the transformation 

Now a rigid body displacement of the system is equivalent to the 

(77) k k 2  
z = z (x ,o 
where ( is a pammeter of the transformation other than t. Row the form of 

the equations of nption (76) is unaffected by a coordinate transformation of 

the type (77). And thus if the mechanical properties of the system are to 

remain unchanged the Wue of the Lagrangian must not be affected by (77). 
' 

(78) k *k L(zk,;.k,S) - L ( x  J X  ) = 0 

Since (77) must hold for all rigid body displacements, it must hold for I 

*he fnfinitesimal rigid body displacements, which'by analogy to (7) can be 

mitten as 
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Differentiation of this expression gives 

1 .  

By a 9aylor expansion we have to first order in the infinitesimal de 

Substituting the equations of motion t76)  in the first term and combining with 

the condition (78) we obtain 

dt 

And thus we have the constant of the motion - 
Mow aLb$k is the momentum canonically conjugate to the coordinate xk and 

A h 
is a vector since 

9 % ~  the constants of the motion represented by (79) are scalars. Since (79) 

must be true for all rigid body motions it must be true separately for infini- 

tesimal rotations and translations. Thm separately 
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Equations (61) and (821 appear t o  supply us with an i n f i n i t e  number of 

constqnts of the  motion'however i n  r ea l i t y  there are only six. This is  because 

i n  a three-dimensiond l inea r  vector space there can only be three l inea r ly  

indepeqdent t rans la t ions  

t ions  

form we return t o  a Ehclidean space covered by Cartesian orthogonal coordinates 

wh-lch give f o r  the canonical momenta ( f r o m  (80)) 

uk (s  = 1,2,3) and three  l inear ly  independent rota- 
S 

(s =t 1,2,3). To display the constants of the motioh i n  the  usual 
S 

For t he  t rans la t iona l  displacements we take un i t  vectors along the coordinate 

l i n e s  thus 

uk a (1~0~0) 
1 

With t h i s  choice f o r  gk we have f'rom (81) and (83) three constants of t he  

motion 



I -  
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For the rotational motion we choose as linearly independent displacements, 

those obtained when the vectors wk are unit vectors along the coordinate 
S 

lines 

ak = (1,0,0) 
1 

mk = (0,1,0) 
2 

Combining (82) and (45) with this choice we obtain 

h A 

Equations (84) and (85) will be recognized as the usual definitions of 

AS lineax momentum and anmar momentum of a system of particles [ 2  I ,  C10l. 
already pointed out P and M are scalars however the P can be considered 

as components of a vector for all affine transformations while M are vector 

componqnts only for centered affine transformations. 

S S S 

S 

Newton's Law of Motion in a Non-Inertial Frame 

In this final section of the paper we develop the form of Newton's equa- 

tions in a non-inertial coordinate system and show that for the special case 

of Cartesian coordinates this reduces to the usual equations. 

our  starting point Newton's equations in an inertial frame x 

We take as 

k 
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where 

Yn a non-inertial frame Zk this becomes 

Eowever from (68) we can express the velocity & in the form 

where we have performed the substitution 

Tkius from (88) we can write 

(89) t2 L1 72 + +z 

??sing the expression (73) for the form of the intrinsic derivative we have then 

Now &’/Ft is just the acceleration a’ as observed in the non-inertial 

frame. Further the derivative 6?/6t of the rigid body velocity field can 

be written as 

Making these substitutions into (90) we obtain the expression 
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Upon the substitution of (91) into (87) we obtain after a slight rearrangement 

- 
If thg tensor s 2 b  is replaced by the oriented vector xi using equation (22) 

then equation (92) takes the form 

Fir;d,ly writing the rigid body motion as a sum of rotational and trans1ation.d 

yelocities by means of (25a) expressed in %-frame we have 

To make a direct comparison with the usual expressions for Newtoq’s l a w  

in a non-inertial frame we again specialize to Cartesian orthogonal coordinates 

in a EL;clidean space. For these conditions we w i l l  shortly show that for those 

frames which are moving uniformly relative to an inertial that the last two 

terms cf (94) are zero. If the motion is purely translational, the remaining 

terms vanish since these are proportional to which is zero in this case. 

Thus the equations of motion in a uniformly translating coordinqbe system are 

Cli 

the same as in an inertial coordinate system. If the motion is purely rota- 
k t;ion.al iir is zero and using (45) in conjunztion with (‘55) with C 9. 0 ’ we 

find that (94) takes the form 
P -7 
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In writing down (95) use was made of the fact that in Cartesian orthogonal 

coordinate systems indices may be raised or lowered at w i l l .  In the nota- 

t i c n  af vector analyses (95) can be written as [21 

m a = ~ - m [ ~ x ~ + o , x ( a , ~ r ) l  - 4 -  " H  " (96) 

Ir (96) the use of a bar over symbols to designate quantities in a non-inertial 

f m e  has been discontinued but it is to be understood that this equation is 

only  d i d  in a non-inertial coordinate system. 

kwid side of (96) or (96) is the Coriolis force while the last term is the 

cent.r-Lf ugal force. 

The second term on the right 

In an earlier paragraph it was asserted that 8yk/at was zero for a 

non-inertial frame moving uniformly relative to the inertial frame, that is, 

where cuk a d  Ck are independent of time. But this is precisely the aitua- 

tion for which (55) gives the relationship between the inertial and non-inertial 

frames. nus we are in a position to explicitly emuate 8Tk/at. ~y differ- 

entiation of (55) we have 

TO get equation (97) in the same form as (48) it would be necessary to eliminate 

y in terms of yz using (55) in the form -k 

However we are interested here in $ rather thqn Va and thus we retain 

9. Since 



n 
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We have as the anaLytical expression f o r  Tk 
iF = +@J + c k 

kid s f x e  ek is independent of t 

By d i r e c t  mult ipl icat ion it can be readi ly  shown that 

which is independent of t. Therefore w e  have immediately t h a t  a p f i t  is  

z w o  f o r  t h i s  case. 
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